Математическая мифология и пангеометризм

Страница: 17/21

8. Конечно, можно вспомнить Я.Штейнера, никогда не пользовавшегося на своих лекциях никакими рисунками, или Дистервега, даже специально затемнявшего помещение во время семинарских занятий по геометрии [13, с.146], однако, это скорее исторические казусы, чем закономерность. Нетрудно догадаться, что способность слушателей следить за рассуждениями этих геометров предполагала уже определенный опыт геометрического мышления использующего эмпирические пособия.

9. Хотелось бы обратить особое внимание на близость развиваемых в настоящем докладе идей с взглядами американского психолога, специалиста в области психологии искусства, Рудольфа Арнхейма, изложенными в его книге «Visual Thinking» (1969) [39]. Арнхейм как раз подходит к математике sub specie artis и (в силу этого) обращает внимание преимущественно на те же культурные феномены, которые оказались и в центре моего внимания. Попытка прояснить сложившиеся у меня в ходе получения математического образования и опыта преподавания математики представления о математическом мышлении (да и мышлении вообще) привели меня к взглядам, оказавшимся в самом близком родстве с представлениями Макса Вертхеймера о творческом мышлении (productive thinking) [8] и, в особенности, с идеями Арнхейма, также явно примыкающими к гештальт-психологии. «Продуктивное мышление - говорит Арнхейм - по необходимости основано на перцептуальных образах и, наоборот, активное восприятие включает в себя отдельные аспекты мышления» [3, с.165]. «Только то, что, по крайней мере, в принципе доступно наглядному воображению, может поддаваться и человеческому пониманию» [2, с.78-79]. Имеется «близкое родство перцептуального опыта и теоретического рассуждения», поэтому «между искусствами и науками нет большой разницы; также нет пропасти и между использованием картин и употреблением слов» [3, с.167]. Самое прямое отношение к нашей теме имеют взгляды Арнхейма на природу абстракции, на различение статических и динамических понятий, на противопоставление фигуры и фона, как основу простейших систем образов (в частности, образов математических) и т.д. Понятие же «хорошего гештальта» (Вертхеймер) дает ключ к пониманию того, что такое математическая красота. Впрочем, использование наработок гештальт-психологов в области психологии мышления для целей философии математики требует отдельного обсуждения.

10. Развитие этой мысли означает разговор о социокультурной природе феномена математики. Перед нами мостик, позволяющий нам ощутить социокультурную гибкость выдвигаемого взгляда. Его гибкость определяется исторической изменчивостью понимания слов «пространство», «время», «пространственно-временное конструирование» и т.п. Однако, социокультурная природа рассматриваемого феномена гарантирует нам не только гибкость и изменчивость, но и преемственность, сохранение «семейного сходства» (Л.Витгенштейн) посредством «социальных эстафет» (М.А.Розов) (см. также введение к настоящему докладу).

11. Уже Аристотель заметил, что математик не нуждается для своих рассуждений в представлении слишком больших величин, ведь его интересуют не сами величины, а их отношения, но «в том же отношении, в каком делится самая большая величина, можно было бы разделить и какую угодно другую» (Phys., III, 7) [1, с.121]. Следовательно, все воображаемые математиками конструкции, без всякого для них вреда, могут быть уложены в рамки конечного аристотелевского космоса. А коль скоро мы хотим говорить о нашей индивидуальной способности воображать - в границы между верхним и нижним порогами восприятия; нужно лишь вовремя менять масштаб: гомотетичным образом увеличивать или уменьшать всю конструкцию.

12. Хотелось бы сделать некоторые замечания, проясняющие отношение высказываемой точки зрения на роль времени и движения в математике к позициям платонической традиции и Канта. Хотя Аристотель (Met., VI, 1) и предлагает отличать математику от физики по неподвижности предмета изучения первой, однако, намеченное у него же учение о специфической материи математических предметов (Met., VII, 10-11; VIII, 6) естественно ведет к мысли и о наличии становления (движения в широком аристотелевском смысле) в этой области: ведь всякая материя есть не только лишенность формы, но и обязательно ее возможность, а всякая возможность раскрывает себя лишь переходя в действительность, т.е. предполагает наличие становления. Таким образом, можно говорить о математическом становлении (Met., IX, 9), однако математика интересует не само становление (это специфический предмет аристотелевской физики), а лишь его результат. Этот взгляд подтверждается и Проклом [24]: с одной стороны, геометрия определяется у него как изучающая величины в покое (в отличие от астрономии, изучающей величины в движении, и охарактеризованной в связи с этим Аристотелем как самая физическая из математических дисциплин - Phys., II, 2), а, с другой стороны, внутри самой геометрии различаются проблемы и теоремы, что напрямую связывается Проклом с различением становления и бытия [27].

Реферат опубликован: 26/01/2009