Исследование взаимосвязи электрофизических параметров кремния

Страница: 3/5

Таблица 1 *-образец перекристаллизован два раза

Анализ результатов позволяет сделать некоторые выводы о зависимости от параметров:

1) В образцах, которые были перекристаллизованы два раза ощутимо меньше удельная электропроводность r, по сравнению с предыдущими образцами.

2) У этих образцов выше подвижность, что позволяет говорить о меньшем количестве примесей; о более глубокой очистке при данном методе.

В данных химического анализа [1], можно видеть:

1) Содержание всех элементов, кроме бора и фосфора, в сырье выше, чем в образцах очищенных кристаллизацией.

2) Бор и фосфор не изменяют свой концентрации при росте кристалла из сырья, и эта концентрация составляет приблизительно 1017 см-3, этот порядок совпадает с порядком величины концентрации носителей заряда в образцах. Это позволяет сделать вывод, что тип полупроводника и концентрацию носителей заряда в нашем случае определяет именно бор и фосфора.

3. Диффузионная длина, фотопроводимость,

время жизни.

Для полного исследования образцов кремния на предмет применимости их в качестве солнечных элементов, недостаточно всех вышеупомянутых методов, позволяющих контролировать основные электрофизические параметры. Необходимо представлять кинетику происходящих в полупроводнике процессов. Основой кинетической характеристикой (7) полупроводниковых материалов является диффузионная длина пробега: длина L на которой dp или dn уменьшаться в e раз в отсутствии внешнего поля. Прямым методом это измерить в нашем случае затруднительно из-за большого количества примесей. Поэтому наша задача измерить время жизни неравновесных носителей заряда t.

3.1 Понятие времени жизни неравновесных носителей заряда.

В полупроводнике (5,7) под влиянием внешнего воздействия концентрации электронов и дырок могут изменяться на много порядков. При термодинамическом равновесии действует принцип детального равновесия, который говорит:

J12=J21 (1.1)

При внешних воздействиях этот принцип нарушается и появляется компонента J12’. При этом в зонах появляются неравновесные носители заряда с концентрациями:

dn=n-n0 dp=p-p0 (1.2)

Если в полупроводнике нет электрического тока, то изменение концентрации электронов и дырок, при внешнем воздействии, выглядит так:

ddn/dt = Gn-Rn ddp/dt = Gp-Rp (1.3)

Gn , Gp – означает темп генерации

Rn , Rp – соответственно темп рекомбинации

Для количественного описания приводится схема кинетики неравновесных электронных процессов применяется понятие среднего времени жизни неравновесных электронов в зоне проводимости и дырок в валентной зоне:

Rn=(n-n0)/tn Rp=(p-p0)/tp (1.4)

Иначе говоря, 1/t есть вероятность исчезновения одного избыточного заряда из одной зоны в единицу времени в следствии рекомбинации

ddn/dt = Gn-dn/tn ddp/dt = Gp-dp/tp (1.5)

Стационарные концентрации неравновесных носителей заряда, устанавливающиеся после длительного воздействия внешней генерации, равны

(dn)s =Gntn (dp)s = Gptp (1.6)

Величины tn tp зависят от физических особенностей элементарных актов рекомбинации электронов и дырок. При этом tn и tp , вообще говоря, могут сами зависеть от неравновесных концентраций dn и dp , а также от температуры. Поэтому tn и tp не являются характеристиками данного полупроводника , но зависят еще от условий опыта. Если dn=dp, то и времена tn tp равны, и мы имеем единое время жизни электронно-дырочных пар t=tn=tp.

3.2 Понятие фотопроводимости.

Простейший способ создания неравновесных носителей заряда состоит в освещении полупроводника. Возникновение неравновесных носителей проявляется в изменении электропроводности полупроводника (фотопроводимость). Электронные переходы при оптической генерации могут быть различными. Если энергия фотонов hw ³ Eg , те неравновесные электроны и дырки образуются вследствие возбуждения электронов из валентной зоны в зону проводимости (собственная оптическая генерация, собственная фотопроводимость). Однако при наличии примесей фотопроводимость может возникать и при hw £ Eg . Оптическая генерация электронов и дырок обязательно сопровождается дополнительным поглощением света. Собственное поглощение света, наблюдается при hw ³ Eg и связано с переходами зона-зона и образованием пар. Примесное поглощение, связанное с возбуждением электронов и дырок с примесных уровней в зоны. Поглощение в собственной полосе частот обычно на много порядков больше поглощения в примесной зоне.

Темп оптической генерации связан с коэффициентом поглощения света

G=u(w)g(w)I(x) (2.1)

u(w)-квантовый выход внутреннего фотоэффекта, равный числу носителей заряда, рождаемых в среднем одним поглощенным фотоном

Реферат опубликован: 14/07/2006