Волоконно-оптические линии связи

Страница: 11/21

К сожалению, требуемая чистота кварцевого стекла практически едва достижима. Как правило, светопроводящий материал более или менее загрязнен. При этом прежде всего следует назвать ионы металлов (железа, хрома, кобальта, меди). Их долю в SiO2­ необходимо уменьшить до значений 10-8 - 10-9, на столько подавляя максимумы погло­щения энергии этими примесными материалами, чтобы достигнуть коэффициента ослаб­ления около 1 дБ/км и менее. Исключительно важна также роль ионов ОН. Их главный резонанс имеет длину волны около 2,7 мкм и со своими гармониками (второй, третьей и т. д.) является причиной более или менее значительных максимумов ослабления на дли­нах волн.],35, 0,95 и 0,75 мкм. А эти значения довольно близки к длинам волн современ­ных лазеров на GaAs и светоизлучающих диодов и поэтому с точки зрения связи пред­ставляют большой интерес. В связи с этим «обезвоженность» стекла чрезвычайно важна.

Вторым существенным фактором влияния на потери в световоде является рассея­ние света. Оно возникает из-за неравномерностей, которые образуются, прежде всего, в течение охлаждения в процессе плавки стекла. Их количественная доля в общем ослабле­нии различна для стекла и газа и зависит от технологии и от применяемого исходного материала. Во всяком случае типичным является сильный спад мощности с увеличением длины волны, а именно на четверть значения. Итак, чтобы получить меньшие значения потерь на рассеяние, целесообразно применять возможно большие длины волн.

5.2 Разница во времени пробега ограничивает пропускную способность линии связи

Упомянутые в п. 4.1 оптимистичные прогнозы об огромной пропускной способно­сти оптических кабелей, связи исходят из соображения, что ширина полосы передаваемо­го сигнала всегда должна быть несколько меньше, чем сама несущая частота. Пропускная способность стеклянного волокна не безгранична. Чтобы передать телефонный разговор как последовательность импульсов, необхо­димо передать большое число (конкретно 64 000) двоичных знаков в секунду (64 000 бит/с или 64 кбит/с). Чтобы преобразовать непрерывно изменяющийся ток микрофона в двоичный сигнал, его необходимо, прежде всего, воспроизвести с помощью импульсов. Найденные значения амплитуды теперь будут изображаться двоичным числом и посы­латься как двоичные сигналы между двумя посылками импульсов. Со стороны приемника следует такое же обратное преобразование. Чтобы передать сигнал с более высоким каче­ством, необходимо различать по меньшей мере 256 амплитудных значений микрофонно­го тока. Поэтому требуется восьмикодовая система (8 двоичных знаков на кодовое слово) для каждого значения импульсной посылки. Для передачи одного движущегося телевизи­онного изображения требуется скорость передачи 80 млн. бит в секунду (80 Мбит/с).

В качестве пропускной способности линии — все равно из меди или стекла — принимается наибольшая скорость передачи сигнала через эту линию, измеренная в битах в секунду (бит — двоичная цифра).

Единица двоичной информации может быть приблизительно пересчитана в соот­ветствующую ширину полосы частот, как обычно делается в аналоговой передающей технике для обозначения характеристики сигналов или кабелей. Так как для передачи информации со скоростью 2 бит/с теоретически требуется ширина полосы по крайней мере 1 Гц (практически около 1,6 Гц), можно приблизительно определить скорость пере­дачи сигнала или пропускную способность в битах в секунду и соответствующую ей ши­рину полосы пропускания в герцах.

Возьмем для примера двоичный закодированный телефонный сигнал. Каждый единичный сигнал этой последовательности (единичный импульс тока или света) должен быть не длиннее, чем 1/64000 с, чтобы не мешать следующим сигналам. Пропускная спо­собность линии принципиально тем выше, чем короче импульсы можно по ней передать.

Реферат опубликован: 31/05/2008