Влияние физических и химических факторов на основность алкиламинов

Страница: 7/13

Вероятно, вследствие проявления эффектов поляризуемости пир­рол (№ 54 в газовой фазе из-за повышаю­щего основность влияния двух α-кратных связей оказался основнее аммиака на 4 ккал/моль.

Влияние поляризуемости, по-видимому, является ответственным за значительное повышение основности газовой фазе пиридина (№ 80) амидов* (№ 32, 33, 55, 81, 82) по сравнению с аммиаком и алкил- аминами.

Рассмотренные данные показывают, что влияние поляризуемо­сти непредельных группировок на основность аминов в газовой фазе оказывается весьма эффективным (оно значительно превышает ре­зонансные влияния). В то же время поляризуемость насыщенных ра­дикалов, которая должна увеличивать основность соединения с рос­том числа заместителей у реакционного центра в данном случае практически не проявляется, поскольку третичные алкиламины являются более слабыми основаниями, чем вторичные и пер­вичные при равных величинах Σσ*(ср. расположение прямых I - III на рис. 1).

Интересно сопоставить основность в газовой фазе трехфтористого азота (см. № 83 в табл.1) и аммиака (№ 1). Пониженная основ­ность NF3 в первом приближении может быть объяснена акцептор­ным действием трех атомов фтора у азота. Однако при количествен­ном рассмотрении получается, что с учетом величины Σσ* атомов фтора значение ΔGB для этого соединения должно быть равным примерно — 190 ккал/ моль. Повышение наблюдаемой величины над расчётной (пример­но на 130 ккал/моль) трудно объяснить на основе любых известных эффектов атомов фтора. Однако возможно, что здесь протоиирование осуществляется не по атому азота, а по атом у фтора. В пользу этого может свидетельствовать тот факт, что величины РА для НF, СН3F и С2Н5F равны 137, 151, 163 ккал/моль соответственно, т. е. прак­тически совпадают со значением для NF3 (151 ± 10 ккал/моль ).

Следует отметить, что влияние алкильных заместителей у атома азота в анилине оказывается аналогичным таковому для алифати­ческих аминов, т. е. основность их увеличивается с ростом чис­ла и размера радикалов (ср. № 31, 52, 53, 74—78), и это влия­ние удовлетворительно описывается уравнением типа (1). Из рис. 1 видно, что точки (частично зачерненные символы) для N-алкил- и N,N-Диалкиланилинов ложатся на отдельные прямые практически с тем же наклоном, что и для алифатических аминов.

В связи с тем, что наклоны прямых па рис. 1 для алифатических и ароматических аминов практически совпадают, все рассмотреные данные для 34 аминов были обработаны по единому урав­нению. В соответствии с этими расчетами влияние структуры названных аминов описывается следующими уравнениями

DGB = 32,7 ± 0,2 — 23,1 ± 0,З Σσ* (первичные алкиламины), (5а) DGB = 27,6 ± 0,3 — 23,1 ± 0,3 Σσ* (вторичные алкиламины), (56) DGB = 20,3 ± 0,3 — 23,1 ± 0,3 Σσ* (третичные алкиламины), (5в) DGВ = 38 ± 0,5 — 23,1 ± 0,3 Σσ* (N-алкиланилины), (5 г)

DGB = 32,6 ± 0,4 — 23,1 ± 0,З Σσ* (N,N-диалкиланилины), (5д)

(s-0,731, R = 0,990).

При этом оказалось, что первичные алифатические и третичные аро­матические амины случайно ложатся практически на одну и ту же ли­нию (прямые I и V на рис. 1). Величина ρ* (~ — 17, если перевести ее в размерность рКа) здесь оказалась значительно выше, чем для воды (~-3) и других заместителей.

Расположение прямых на рис. 4 свидетельствует о том, что в газовой фазе сродство аминов к протону при равенстве Σσ* их радикалов изменяется в ряду: первичные> вторичные> третичные

В+Н · (Н2О)п-1 + Н2О « В+Н • (Н20)n (6)

Эти данные свидетельствуют о том, что, например, кластер |МН4 (Н20)4 практически не обладает особой устойчивостью по сра­жению с кластерами другого состава, поскольку на графиках «свойство — n» (n изменяется от 1 до 5) некоторый излом при N = 4 обнаруживается только при рассмотрении изменений энталь­пии процесса В случае изменений свободной энергии [180] ника­кого излома не наблюдается, хотя при преимущественном образовании первого гидратного слоя в соответствии с рассмотренной, выше сольватационной теорией следовало бы ожидать различный характер обеих указанных зависимостей в области n < 4 (образо­вание первого гидратного слоя) и n > 4 (образование следующего слоя), т. е заметные изломы при n = 4 Для катиона триметиламмония соответствующий график как для DH°, так и для DG° не претерпевает никаких изменений при любых n (от 1 до 5) Аналогичная монотонная зависимость соблюдается при любых n [от 1 до 8) при гидратации протона в газовой фазе.

Реферат опубликован: 5/11/2009