Влияние физических и химических факторов на основность алкиламинов

Страница: 6/13

Отклонения, наблюдаемые для диаминов (табл. 1, № 16—21), обусловлены внутримолекулярной сольватацией типа III [156,157]. Влияние этой сольватации, которое можно количественно оценить по отклонению соответствующих точек от прямой I на рис. 4, силь­нее всего проявляется при n = 4, что можно связать с устойчи­востью соответствующих структур.

Внутримолекулярная сольватация того же типа, вероятнее всего, ответственна и за отклонения вверх то­чек для b-метоксиэтиламина (№ 22), пиперазина (№ 46), морфолина (№ 47) и N,N-тетраметилэтилендиамина (№ 68) от соответствую­щих прямых. В случае диазобициклооктана (№ 69) существенное отклонение (~ 13 ккал/моль) точки о! прямой для третичных аминов, вероятно, обусловлено стабилизацией его катиона за счет взаимодействия непо­деленной электронной пары непротонированного атома азота с орбиталым атомом азота, к которому присоединен протон.

Отклонения точек для аминов, содержащих электроотрицатель­ные заместители, также, по-видимому, следует связывать с увеличением DGB этих аминов за счет стабилизации их катионов при образовании внутримолекулярных водородных связей, например типа IV для фторсодержащих алкиламинов.

Труднее объяснить наблюдаемые отклонения от соответствую­щих прямых точек для циклогексиламина (№1 4), гидразина (№ 15), манксина (№ 66) и N,N-диметилгидразина (№ 67). Здесь, по-види­мому, проявляется как некоторое расхождение в величинах GB, полученных разными авторами (например, в случае манксина при­веденное в табл. 1 значение DGB было рассчитано при сопоставле­нии данных по РА этого амина и GB других аминов), так и влияние (в гидразинах) неподеленной электронной пары на α-гетероатоме (α-эффект ).

При рассмотрении основности ароматических аминов в газовой фазе (табл. 1, № 31, 52, 53,74—78), прежде всего обращает внима­ние тот факт, что их величины DGB значительно выше, чем для ам­миака, и практически совпадают с таковыми для алифатических аминов с насыщенными углеводородными ­ заместителями. ­ Такое аномальное поведение анилина и его производных объясняется повышенным влиянием поляризуемости фенильного кольца в газовой фазе, которое превышает действие резонансного эффекта. Указанное влияние поляризуемости α-непредельных связей проявляется и в случае дифенил- и трифениламинов. Так, трифениламин, основность которого в воде не поддаётся измерению в газовой фазе,оказался сильнее, чем даже метиламин. Повышена основность и дифенилами­ на, который по своему сродству к протону в газовой фазе находится между метиламином и анилином. Используя отданные, можно попытаться количественно оценить различие во влиянии поляри­зуемости и резонанса фенильной группы на основность ариламинов. Для анилина, где соответствующая величина расчитывалась как от­клонение его точки от корреляционной прямой для первичных алкнламинов, она оказалась равной примерно 10 ккал/моль. В слу­чае дифениламина (отклонение от прямой для вторнчных алкиламинов) при использовании среднего значения DGB между анилином и метиламином (~ 8 ккал/моль) получается, что действие каждой фенильной группы равно ~ 10 ккал/моль. А для трифениламина (DGB = ~ 11 ккал/моль как среднее значение между метил­амином и М-метиланилином данная величина, определенная по отклонению от прямой для третичных алкиламинов, оказа­ лась равной ~ 11 ккал/моль. Таким образом, можно считать, что; различие в действии эффектов поляризуемости и резонанса каждой α-кратной связи практически не зависит от числа таких связей. Влияние только резонансного эффекта количественно оценивается при сравнении основности в газовой фазе бензохинуклиди-1 на (№ 79) и N,N-диалкиланилинов (№ 74—78). Сопоставление значений DGB для этих аминов приводит к величине ~ 5 ккал/моль, Принимая во внимание отмеченное выше различие во влиянии поля­ризационного и резонансного эффектов фенильных групп, можно считать, что эффект поляризуемости α-непасыщеной связи на газо­фазную основность аминов равен ~ 15 ккал/моль.

Реферат опубликован: 5/11/2009