Описание работы электрической схемы охранного устройства

Страница: 2/15

Также ещё в некоторых справочниках и изданиях для радиолюбителей (А.И.Кизлюк. Справочник по устройству и ремонту телефонных аппаратов. М: «Антелком», 1998; И.Н.Балахничев, А.В.Дрик. Практическая телефония. М: «ДМК», 1999 и др.) предлагается реализовать режим охраны помещений используя приставки автоматического определения номера, но и в данном предложении есть свои недостатки – не все версии АОНов это позволяют и не все АТС оборудованы автоматическим определением номера.

Таким образом, рассмотренные литературные источники позволяют сделать вывод, что описанные охранные устройства ввиду большого набора функций и используемой сложной элементной базы имеют высокую стоимость, что является причиной их ограниченного использования рядовым потребителем.

Проектируемое устройство свободно от изложенных выше недостатков, так как в нём использована несложная и недорогая элементная база, сокращён набор дополнительных функций, что существенно не оказывает влияния на его потребительские свойства.

2. Выбор и обоснование принципиального решения.

2.1. Краткий обзор существующих схемотехнологий, применяемых в интегральных схемах.

Рассмотрим наиболее распространенные схемотехнологии применяемые в интегральных схемах:

1. Транзисторно-транзисторная логика (ТТЛ).

2. Эмиттерно-связанная логика (ЭСЛ).

3. Логика, построенная на основе структуры метал-диэлетрик-полупроводник с п-каналом (пМДП).

4. Логика, построенная на основе структуры метал-диэлетрик-полупроводник с транзисторами разной проводимости (КМДП).

2.1.1. ТЕХНОЛОГИЯ ТТЛ.

Технология ТТЛ основана на биполярных структурах. Базовый элемент ТТЛ представляет собой схему, содержащую один многоэмиттерный транзистор и один обычный (см. рис. 2.1), это логическая схема И-НЕ (функцию И выполняет транзистор VT1, а функцию инверсии выполняет транзистор VT2).

Рис. 2.1. Базовый элемент ТТЛ.

Подобная схема обладает низкой помехоустойчивостью и низким быстродействием, быстродействие можно увеличить, используя сложный инвертор, который позволяет сократить время включения (переход из логического «0» в логическую «1»); но время выключения (переход из логической «1» в логический «0») сократить, не удается.

Более высокое быстродействие позволяют получить схемы субсемейства ТТЛШ (транзисторно-транзисторная логика с использованием транзисторов с барьером Шотки; см. рисунок 2.2). В таких схемах барьер Шотки создает нелинейную обратную связь в транзисторе, в результате транзисторы не входят в режим насыщения, хотя и близки к этому режиму. Следовательно, практически исключается время рассасывания, что позволяет существенно увеличить быстродействие.

Рис. 2.2. Транзистор Шотки.

2.1.2. ТЕХНОЛОГИЯ ЭСЛ.

Технология ЭСЛ является так же, как и технология ТТЛ, биполярной,

т.е. элементы строятся с использованием биполярных структур. Основой элементов ЭСЛ является так называемый «переключатель тока», на основе которого строится базовый элемент этой технологии - ИЛИ- -НЕ (см. рис.2.3); по выходу1 данной схемы реализуется логическая функция ИЛИ-НЕ, а по выходу2 - ИЛИ.

Рис. 2.3. Базовый элемент ЭСЛ.

Из-за низкого входного сопротивления схемы ЭСЛ обладают высоким быстродействием и работают преимущественно в активном режиме, следовательно, помеха попавшая на вход усиливается. Для повышения помехоустойчивости шину коллекторного питания делают очень толстой и соединяют с общей шиной.

По сравнению со схемами ТТЛ схемы ЭСЛ обладают более высоким быстродействием, но помехоустойчивость у них гораздо ниже. Схемы ЭСЛ занимают большую площадь на кристалле, потребляют большую мощность в статическом состоянии, так как выходные транзисторы открыты и через них протекает большой ток. Схемы, построенные по данной технологии не совместимы со схемами, построенными по другим технологиям, использующим источники положительного напряжения.

2.1.3. ТЕХНОЛОГИЯ пМДП.

В отличие от технологий, рассмотренных выше, технология пМДП основана на МДП - структурах, которые обеспечивают следующие преимущества по сравнению с биполярными:

Реферат опубликован: 13/01/2008