Кодоимпульсные ТИС

Страница: 5/8

Напряжение —фаза — временной интервал—чис­ло — код. Кодирование по данной схеме представлено на рис. 13.12, а. Измеряемое напряжение поступает на фазосдвигающее устройство ФСУ, пи­таемое от источника переменного тока с частотой /. В зависимости от значе- • ния Ua изменяется фазовый угол меж­ду напряжениями е и еч на выходе ФСУ. Этот угол соответствует времен­ному интервалу t=^/(2nf) измерите­ля фазового угла ИФ (рис. 13.12,6). Последний представляет собой /?5-триг-гер с инверсными входами, меняющий

состояние 0 на 1 в момент перехода напряжения е через нуль и 1 на 0 при переходе через нуль напряжения еч, как показано на рис. 13.12, б. Таким образом, на выходе возникает импульс длительностью /, который затем подается на ключ, и дальше все происходит, как и в предыдущем преобра­зователе (см. рис. 13.11).

К погрешностям, имеющимся в схеме рис. 13.11, в преобразователе по схеме рис. 13.12 добавляется погрешность от нестабильности характе­ристики фазосдвигающего устройства и точности измерителяфазового угла, фиксирующего момент прохождения напряжения через нуль.

Рис. 13.12. Преобразователь изме­ряемого напряжения в код с про­межуточным преобразованием вход­ной величины в фазу переменного напряжения:

а — функциональная схема; б — вре­менные диаграммы

Напряжение — частота — число — код. Кодирование по такой схеме показано на рис. 13.13. Измеряемая величина и, в частотно-импульсном преобразователе ЧИП, представляющем собой генератор им­пульсов, модулируемых по частоте, преобразуется в последовательность импульсов с частотой f=p(u). Хронизирующее устройство Т на ранее заданный интервал времени t открывает элемент И, и импульсы с ЧИП поступают на счетчик СТ2. Больше или меньше пройдет импульсов на счетчик, зависит от их частоты. Погрешность преобразования зависит от нестабильности и нелинейно­сти характеристики f=j(u) частотно-импульсного преобразователя.

Непосредственное преобразование напряжения в код. В этих преобра­зователях образуемый в кодирующем устройстве код преобразуется в напряжение, которое сравнивается с измеряемым напряжением. При равенстве напряжений образование кода прекращается и он подается на выход.

Преобразователь последовательного счета (рис. 13.14). Перед началом работы счетчик СТ2 сбрасывается на нуль (рис. 13.14, а). Показания счетчика преобразуются с помощью цифро-аналого-вого преобразователя ЦАП в напряжение, поступающее на схему сравне­ния СС. В начале преобразования, пока напряжение щ: с ЦАП меньше преобразуемого напряжения Чх, элемент Ио открыт и счетчик считает им­пульсы с генератора импульсов ГИ. Когда м»>й.с, схема сравнения СС за­крывает элемент Ио и подает сигнал на элементы И—Ип для считывания двоичного кода со счетчика. Количество импульсов, поступивших на счет­чик, пропорционально преобразуемому напряжению Ux.

На рис. 13.14,6 показано, как от каждого импульса, поступающего с ГИ, увеличивается преобразованное в ЦАП (этот преобразователь будет рассмотрен позже) напряжение:

Uk=UoN (13.5)

Чем больше число импульсов в данном интервале счетчика, тем меньше значение xUo=Uk-Ux (рис. 13.14, б). Нестабильность частоты генератора импульсов не влияет на точность преобразования напряжения в код.

Преобразователь по методу поразрядного кодирования (взвешивания). Он имеет более широкое применение

Рис. 13.14. Компенсационный кодирующий Преобразователь последовательного счета:

б — временная диаграмма

Рис. 13.15. Преобразователь по методу поразрядного кодирования:

а—функциональная схема; б—пример преобразования измеряемой величины в код;

в — код, снимаемый с триггеров

вследствие большей по сравнению с другими преобразователями точности и высокого быстродействия.

В состав преобразователя, функциональная схема которого представ­лена на рис. 13.15а, входят следующие узлы: распределитель, преобразователь кода в напряжение ЦАП (он состоит из цифрового регистра на триггерах T1-T5, ключей K1—K5, декодирующей сети сопротивлений и источника эталонного напряжения) и компаратор Кр, предназначенный для сравнения двух напряжений (входного сигнала их и сигнала Еэт с вы­хода ЦАП) и выработки выходного сигнала управления.

Реферат опубликован: 27/02/2009