Диагностика отказов элементов и устройств

Страница: 4/8

· появления заряда, образованного избыточными атомами кремния в окисле около границы с кристаллом. Из-за того, что атомы кремния находятся в избытке при механизме образования окисла кремния, образуется положительный заряд, созданный оставшимися атомами кремния. При нормальной температуре этот заряд практически неподвижен, при очень высокой температуре и наличии сильного поля этот заряд перемещается в направлении к внешней поверхности окисла пленки (SiO2);

· появление заряда, образованного е, находящимися на поверхностных уровнях. При обрыве кристаллической решетки на границе появляются атомы полупроводника с нарушенными электронными связями, т.е. е занимают энергетические (поверхностные) состояния, лежащие внутри запрещенной зоны энергий для данного полупроводника. Из-за этого е с такой энергией не могут проникать в глубь кристалла и остаются только вблизи поверхности. При заполнении и освобождении соответствующих энергетических состояний носители заряда - е и дырками возникают и исчезают поверхностные заряды. Чем дальше от полупроводника локализован поверхностный энергетический уровень, тем больше время его заполнения или освобождения. Этот процесс вызывает, с одной стороны, низкочастотный (НЧ) шум и является причиной нестабильности основных параметров ППП;

· появление и образование каналов проводимости вдоль поверхности кристалла. Этот процесс, как правило, приводит к изменению коэффициента усиления в биполярных транзисторах и изменению многих характеристик полевых транзисторов (ток инжекции и «паразитного» перехода снижает эффективность эмиттера дополнительный обратный ток или ток через канал уменьшает усиление и крутизну транзисторов в режиме малых токов).

Эксперименты многих исследователей показали существенные изменения параметров ППП в процессе испытаний, если к переходам ППП приложено большое напряжение в комбинации с высокой температурой окружающей среды. Было доказано, что при таких напряжениях в электрическом поле происходит разделение и группировка положительных и отрицательных ионов на поверхности, дрейф этих ионов по направлению к электродам, имеющим соответствующий знак заряда. Было доказано, что эти процессы являются источником НЧ шума и ответственны за изменение основных параметров ППП во времени.

3. Обзор неразрушающих методов испытания

элементов РЭА.

Наиболее частой причиной, по мнению многих специалистов, снижающей качество готовой продукции являются скрытые дефекты и важную роль в проблеме повышения качества и надежности изделий электронной техники (ИТЭ) отводят неразрушающим испытаниям (НРИ) - дефектологии, науке о принципах, методах и средствах обнаружения дефектов.

Для контроля дефектов в ИТЭ разделяют две группы НРИ. Первую группу составляют методы интегральной диагностики, наиболее эффективными из них являются методы, основанные на измерении шумовых характеристик, в том числе электрических и акустических шумов. Вторую группу составляют методы локальной диагностики. В настоящее время для контроля ИЭТ применяются общие и специальные методы НРИ. К общим относятся: визуальный контроль, испытание давлением, акустическая и магнитная дефектоскопия, метод капиллярной дефектоскопии, радиография и метод вихревых токов.

К специфическим методам НРИ относятся: рентгеновские, голографические, тепловые, оптические и электрические методы.

Визуальный контроль наиболее широко распространенный метод НРИ. Используется для исследования поверхностных характеристик (повреждения, посторонние включения, расположение элементов и пр.). Метод прост, требует малых затрат времени и недорог [3].

При испытании давлением дефекты обнаруживаются по проникновению газов или жидкости в полости дефектов или через эти дефекты [3].

Под акустическими испытаниями понимают звуковые и ультразвуковые испытания. Наиболее широко используется ультразвуковая спектроскопия. Метод основан на использовании явлений, связанных с дифракцией света. Метод звуковой спектроскопии используется для формирования изображения путем сканирования эхоимпульсом. Недостатком является то, что объекты контроля сравнимы по размерам с пределами разрешения, из-за чего, как правило, получается некачественное изображение. Также, большинство объектов контроля взаимодействует с ультразвуком сложным образом, из-за чего полученные изображения нуждаются в дополнительной расшифровке. [3], [6]

Метод капиллярной дефектоскопии основан на использовании проникающих красящих или люминесцентных жидкостей, которые светятся под действием ультрафиолетового излучения. [3], [6]

Реферат опубликован: 24/01/2009