Волновая оптика

Страница: 4/5

Пусть диск закрывает т первых зон Френеля. Тогда амплитуда результирующего колебания в точке В равна

A=Am+1 – Am+2 + Am+3 -…= Am+1 /2+(Am+1 /2 – Am+2 +Am+3 /2)+…, или A=Am+1 /2, так как выражения, стоящие в скобках, равны нулю. Следовательно, в точке В всегда наблюдается интерференционный максимум (светлое пятно), соответствующий половине действия первой открытой зоны Френеля. Центральный максимум окружён концентрическими с ним тёмными и светлыми кольцами, а интенсивность максимумов убывает с расстоянием от центра картины.

Задача. Два груза D и E массами тD =0,25 кг и тЕ =3 кг лежат на гладкой плоскости, наклонной под углом α=30° к горизонту, опираясь на пружину, коэффициент жёсткости которой с=6 Н/см =600 Н/м.

В некоторый момент груз Е убирают; одновременно (t=0) нижний конец пружины В начинает совершать вдоль наклонной плоскости движение по закону ξ =0,02sin 10t (м). Найти уравнение движения груза D.

Решение. Применим к решению задачи дифференциальные уравнения движения точки. Совместим начало координатной системы с положением покоя груза D, соответствующим статической деформации пружины, при условии, что точка В занимает своё среднее положение (ξ=0).

Направим ось x вверх вдоль наклонной плоскости (в сторону движения груза D после снятия груза Е). Движение груза D определяется по следующему дифференциальному уравнению: mD x=∑Xi,

где ∑Xi – сумма проекций на ось х сил, действующих на груз D (рис. а): GD – веса, N – нормальной реакции наклонной плоскости, Р – силы упругости пружины.

Таким образом, mD x = -GD sin α – P.

Здесь P = c(x – fст D – ξ), где fст D – статическая деформация пружины под действием груза D; ξ – перемещение точки прикрепления нижнего конца пружины, происходящее по закону ξ =d sin pt (d =0,02 м, p=10 рад/с).

Статическая деформация пружины fст D найдём из уравнения, соответствующего состоянию покоя груза D на наклонной плоскости (рис. б):

∑Xi =0;

-GD sin α +P0 =0,

т. е. –GD sin α + cfст D =0,

откуда fст D =GD sin α/c.

Дифференциальное уравнение движения груза D имеет вид

mD x = -GD sin α – c(x – fст D – ξ),

или после преобразования mD x + cx = cd sin pt.

Разделив все члены уравнения на mD и введя обозначения

c/mD = k2, cd/mD = h,

приведём дифференциальное уравнение к следующему виду:

x + k2x = h sin pt.

Решение этого неоднородного уравнения складывается из общего решения х*, соответствующего однородного уравнения и частного решения х** данного неоднородного уравнения:

x = x*+ x**.

Общее решение однородного уравнения имеет вид

x* = C1 cos kt +C2 sin kt.

Частное решение неоднородного уравнения:

x** = [ h /(k2 – p2)] sin pt.

Общий интеграл

x = C1 cos kt +C2 sin kt + [ h /(k2 – p2)] sin pt.

Для определения постоянных интегрирования С1 и С2 найдём, кроме того, уравнение для х

Реферат опубликован: 5/12/2009