Высокомолекулярные соединения, их свойства и применение

Страница: 4/8

В химии высокомолекулярных соединений форма макромолекулы приобретает очень важное значение. Так, макромолекула линей­ного полимера в зависимости от геометрии элементарных звеньев и порядка их чередования (если они различаются по химическому со­ставу и стереометрии) может по своей форме приближаться к жест­кой палочке (полифенилены, полиацетилены), свертываться в спираль (амилоза, нуклеиновые кислоты, пептиды) или в клубок (глобуляр­ные белки). В зависимости от формы макромолекулы линейные полимеры могут значительно различаться по свойствам. Но в то же время они имеют ряд общих свойств, характерных именно для •линейных полимеров, которые отличают их от полимеров с иной гео­метрической формой молекул.

Все линейные полимеры принципиально могут быть переведены в раствор. Растворы линейных полимеров даже при относительно небольших концентрациях обладают высокой вязкостью, в десятки и сотни раз превышающей вязкость соответствующих растворов низко­молекулярных соединений. Многие линейные полимеры могут пла­виться без разложения, причем их расплавы также обладают очень высокой вязкостью. Линейные полимеры, отличаются хорошими физи­ко-механическими свойствами: большой прочностью и эластич­ностью. Гибкость макромолекулы линейных полимеров способствует их растворению и плавлению, а способность гибкой макромолекулы изменять форму под влиянием внешних усилий обусловливает высо­кие эластические свойства. Значительная разрывная прочность ли­нейных полимеров объясняется главным образом тем, что линейные макромолекулы могут достигать высокой степени ориентации отно­сительно друг друга и иметь большую плотность упаковки, что приводит к возникновению многочисленных межмолекулярных связей свысокой суммарной энергией.

Эти особенности свойств линейных полимеров вытекают из их строения. Наличие двух типов связей (химических валентных свя­зей и физических межмолекулярных взаимодействий), различающихся по энергетической характеристике, определяет возможность растворения и плавления линейных полимеров. Высокой степенью асимметрии макромолекул обусловлена высокая вязкость растворов и расплавов линейных полимеров.

Разветвленные полимеры также могут быть переведены в рас­твор, причем при одинаковом химическом составе и молекулярном весе растворимость разветвленных полимеров выше растворимости линейных полимеров.

Прочность разветвленных полимеров и вязкость их растворов зависят от степени и типа разветвления. Полимеры, имеющие относительно небольшое число боковых цепей, очень близки по свойствам к линейным полимерам. Сильноразветвленные полимеры, вследствие значительно меньшей степени асимметрия молекул, образуют растворы пониженной вязкостью. Прочность таких полимеров ниже прочности соответствующих линейных полимеров той же природы.

Сетчатые полимеры резко отличаются по свойствам от линейных и разветвленных полимеров. Они не плавятся без разложения и не могут быть переведены в раствор. Это связано с тем, что в сетчатых полимерах преобладают прочные химические связи между макромо­лекулами. Физические и физико-механические свойства этих поли­меров зависят от числа межмолекулярных химических связей и от регулярности их расположения. С увеличением числа межмолекулярных связей твердость вещества увеличивается, повышается мо­дуль упругости и уменьшается величина относительной деформации, т.е. свойства сетчатого (пространственного) полимера приближают­ся к свойствам кристалла (примером кристаллического полимера с правильной пространственной решеткой является алмаз).

Особенности реакций полимеров.

Химические превращения полимеров дают возможность созда­вать многочисленные новые классы высокомолекулярных соеди­нений и в широком диапазоне изменять свойства и области применения готовых полимеров.

Лучше всего изучены химические свойства природных высоко­молекулярных соединений (целлюлозы, крахмала, белков), которые были известны за много десятков лет до появления синтетических полимеров. Наибольшее внимание уделялось химическим превраще­ниям целлюлозы, обладающей ценными техническими свойствами .и являющейся наиболее широко распространенным природным органи­ческим полимером. Путем химических превращений целлюлозы полу­чают ацетаты целлюлозы, применяемые для производства волокна, лаков, пленок, пластмасс; нитраты целлюлозы для производства пластмасс, пленок, лаков и бездымного пороха; многочисленные про­стые эфиры целлюлозы, имеющие весьма разнообразное применение для производства лаков, пленок, электроизоляционных материалов, в качестве отделочных средств в текстильной промышленности, а так­же присадок при бурении нефтяных скважин.

Реферат опубликован: 16/03/2007