Страница: 10/14
Информация представляет собой совокупность сведений, которые увеличивают знания потребителя о том или ином объекте, от которого получены эти сведения.
Для того, чтобы иметь возможность сравнивать различные каналы связи, необходимо иметь некоторую количественную меру, позволяющую оценить содержащуюся в передаваемом сообщении информацию. Такая мера в виде количества передаваемой информации была введена К.Шенноном.
В реальных источниках сообщений выбор элементарного сообщения является для потребителя случайным событием и происходит с некоторой априорной вероятностью P(xk). Очевидно, что количество информации, содержащееся в сообщениях xK, должно являться некоторой функцией этой вероятности
(5.1.1)
Функция j при этом удовлетворять требованию аддитивности, согласно которому n одинаковых сообщений должны содержать в n раз большее количество информации. Для измерения количества информации принято использовать логарифмическую функцию, практически наиболее удобную и отвечающую требованию аддитивности.
(5.1.2.)
Таким образом, определение количества информации в элементарном сообщении xK сводится к вычислению логарифма вероятности появления (выбора) этого сообщения.
В технике связи наиболее часто используются двоичные коды. В этом случае за единицу информации удобно принять количество информации, содержащееся в сообщении, вероятность выбора которого равна
. Эта единица информации называется двоичной или битом.
В некоторых случаях более удобным является натуральный логарифм. Одна натуральная единица соответствует количеству информации, которое содержится в сообщении с вероятностью выбора
.
![]()
Из формулы следует, что сообщение содержит тем большее количество информации, чем меньше вероятность его появления.
Энтропия источника сообщений.
В теории связи основное значение имеет не количество информации, содержащееся в отдельном сообщении, а среднее количество информации, создаваемое источником сообщений. Среднее значение (математическое ожидание) количества информации, приходящееся на одно элементарное сообщение, называется энтропией источника сообщений.
![]()
(5.2.1.)
Как видно из формулы, энтропия источника определяется распределением вероятностей выбора элементарных сообщений из общей совокупности. Обычно отмечают, что энтропия характеризует источник с точки зрения неопределенности выбора того или иного сообщения. Энтропия всегда величина вещественная, ограниченная и неотрицательная: H(x)>0.
Найдем энтропию источника сообщений:
m-объем алфавита дискретного источника = 2;
вероятность приема “1” (Р(1)) = 0,9;
вероятность приема “0” (Р(0)) = 0,1.
Для вычисления энтропии воспользуемся формулой .
![]()
Производительность источника сообщений.
Отдельные элементы сообщения на входе источника появляются через некоторые интервалы времени, что позволяет говорить о длительности элементов сообщения и, следовательно, о производительности источника сообщений. Если средняя длительность одного элемента сообщения равна
, то производительность источника, равная среднему количеству информации, передаваемой в единицу времени, определяется выражением:
; (5.3.1.)
воспользуемся данной формулой для вычисления производительности источника.
Реферат опубликован: 8/01/2009