Титановые сплавы

Страница: 3/9

5. Высокое сопротивление ползучести. Минимальные требования: при температуре 400° С и напряжении 50· Па остаточная деформация за 100 ч не должна превосходить 0,2%. Максимальным требованием можно считать тот же предел при температуре 500° С за 100 ч. Эта характеристика особенно важна для деталей, подверженных в процессе работы значительным растягивающим напряжениям, как, например, диски компрессоров.

Однако со значительным увеличение ресурса работы двигателей правильнее будет базироваться на продолжительности испытания не 100 ч, а значительно больше - примерно 2000 – 6000 ч.

Несмотря на высокую стоимость производства и обработки титановых деталей, применение их оказывается выгодным благодаря главным образом повышению коррозионной стойкости деталей, их ресурса и экономии массы.

Стоимость титанового компрессора значительно выше, чем стального. Но в связи с уменьшением массы стоимость одного тонно-километра в случае применения титана будет меньше, что позволяет очень быстро окупить стоимость титанового компрессора и получить большую экономию.

Влияние примесей на титановые сплавы.

Кислород и азот, образующие с титаном сплавы типа твердых растворов внедрения и металлидные фазы, существенно снижают пластичность титана и являются вредными примесями. Кроме азота и кислорода, к числу вредных для пластичности титана примесей следует отнести также углерод, железо и кремний.

Из перечисленных примесей азот, кислород и углерод повышают температуру аллотропического превращения титана, а железо и кремний понижают ее. Результирующее влияние примесей выражается в том, что технический титан претерпевает аллотропическое превращение не при постоянной температуре (882° С), а на протяжении некоторого температурного интервала, например 865 – 920° С (при содержании кислорода и азота в сумме не более 0,15%).

Подразделение исходного губчатого титана на сорта, различающиеся по твердости, основано на разном содержании указанных примесей. Влияние этих примесей на свойства изготовляемых из титана сплавов столь значительно, что должно специально учитываться при расчете шихты, чтобы получить механические свойства в нужных пределах.

С точки зрения обеспечения максимальной жаропрочности и термической стабильности титановых сплавов все эти примеси, за исключением, вероятно, кремния, должны считаться вредными и содержание их желательно свести к минимуму. Дополнительное упрочнение, даваемое примесями, совершенно не оправдывается из-за резкого снижения термической стабильности, сопротивления ползучести и ударной вязкости. Чем более легированным и жаропрочным должен быть сплав, тем ниже должно быть в нем содержание примесей, образующих с титаном твердые растворы типа внедрения (кислород, азот).

При рассмотрении титана как основы для создания жаропрочных сплавов необходимо учитывать возрастание химической активности этого металла по отношению к атмосферным газам и водороду. В случае активированной поверхности титан способен поглощать водород при комнатной температуре, а при 300° С скорость поглощения водорода титаном очень высока. Окисная пленка, всегда имеющаяся на поверхности титана, надежно защищает металл от проникновения водорода. В случае наводороживания титановых изделий при неправильном травлении водород можно удалить из металла вакуумным отжигом. При температуре выше 600° С титан заметно взаимодействует с кислородом, а выше 700° С – с азотом.

Основные диаграммы состояния.

При сравнительной оценке различных легирующих добавок к титану для получения жаропрочных сплавов основным вопросом является влияние добавляемых элементов на температуру полиморфного превращения титана. Процесс полиморфного превращения любого металла, в том числе и титана, характеризуется повышенной подвижностью атомов и, как следствие, снижением в этот момент прочностных характеристик наряду с повышением пластичности. На примере жаропрочного титанового сплава ВТ3-1 видно, что при температуре закалки 850° С резко снижается предел текучести и меньше - прочность. Поперечное сужение и относительное удлинение при этом достигают максимума. Объясняется это аномальное явление тем, что стабильность β-фазы, зафиксированной при закалке, может быть различной в зависимости от состава ее, а последнее определяется температурой закалки. При температуре 850° С фиксируется настолько не стабильная β-фаза, что ее распад можно вызвать приложением внешней нагрузки при комнатной температуре (т. е. в процессе испытания образцов на растяжение). В результате сопротивление металла действию внешних сил значительно снижается. Исследованиями установлено, что наряду с метастабильной β-фазой в этих условия фиксируется пластичная фаза, имеющая тетрагональную ячейку и обозначаемая α´´.

Реферат опубликован: 14/10/2008