Жаростойкие и жаропрочные никелевые сплавы

Страница: 2/5

Сплавы обладают высокими механическими свойствами.

Марка материала

Термическая обработка

Механические свойства

sВ900, МПа

s1001000, МПа

s100900, МПа

d, %

ЭП109

Закалка с 1220°С 5 ч и старение при 950°С 2 ч

650

150

270

6

ЖС6КП

Закалка с 1220°С 4 ч и старение при 900°С 16 ч

770

160

270

6

ЖС6У

Закалка с 1230°С 3 ч и старение при 950°С 2 ч

800

165

330

5

ВЖЛ12У

» »

780

150

320

5

ЖС6Ф-НК

» »

850

180

450

12

ЖС26 (ВСНК)

Закалка с 1260°С 4 ч

880

200

410

8

ЖСЗ2 (монокр)

Закалка с 1280°С 4 ч

960

250

475

18

Деформируемые сплавы ЭП109 и ЖС6КП применяются при температурах на металле не более 950°С, а сплавы ЖС6У, ВЖЛ12У и ЖС6ФНК имеют более высокие допустимые значения температур в эксплуатации, соответственно 1000°С для ЖС6У и ВЖЛ12У и до 1050°С для ЖС6ФНК. Отсутствие поперечных границ зёрен, более низкий модуль упругости и более высокая пластичность сообщают сплаву ЖС6ФНК повышенную долговечность при воздействии высоких температур и циклических термомеханических нагрузок. Температурные ограничения применения жаропрочных сплавов с дисперсионным упрочнением обусловлены растворением, быстрой коагуляцией упрочняющей g¢-фазы и падением жаропрочности при перегревах деталей в процессе эксплуатации.

Деформируемые сплавы имеют более мелкозернистую структуру, которая обеспечивает их более высокое сопротивление усталости, тогда как литейные сплавы с равноосной структурой имеют более высокую жаропрочность.

Введение гафния в сплав ЖС6ФНК усиливает карбидную ликвацию, способствует способствует образованию в поверхностном слое карбидов Ме6С, обладающих низкой жаростойкостью и не покрывающихся при диффузионном алитировании. Наличие ванадия и титана в сплаве ЖС26 значительно снижает жаростойкость. Сплав ЖС32 не содержит титана и ванадия, а легирование алюминием, танталом и небольшой концентрацией хрома обеспечивает сплаву высокую жаростойкость.

Сплавы ЖС26 и ЖС32 с направленной и монокристаллической структурой обладают более высокой термической стабильностью, термостойкостью. Для обеспечения однородности состава и структуры по объёму отливки лопаток подвергаются нагреву при закалке в вакууме до более высоких, чем равноосные сплавы, температур. В процессе нагрева и высокотемпературной выдержки происходит растворение g¢-фазы и карбидов МеС, Ме23С6, Ме6С в твёрдом растворе на никелевой основе. При охлаждении происходит выделение упрочняющей g¢-фазы, которая обеспечивает сплавам высокие механические свойства.

Для деталей из литейных никелевых сплавов широко используется гомогенизация. При гомогенизации происходит уменьшение степени ликвации и стабилизация структуры сплавов. Гомогенизация способствует увеличению объёмного содержания дисперсных частиц упрочняющей g¢-фазы. Во время высокотемпературной выдержки растворяются грубые выделения g¢-фазы, образовавшиеся при кристаллизации. Следует, однако, отметить, что оптимизация режимов термической обработки для достижения оптимальной формы, размеров и распределения частиц упрочняющей g¢-фазы не всегда сопровождается улучшением механических свойств. Так, например, образование частиц карбидов Ме6С неблагоприятной пластинчатой формы в процессе гомогенизации и последующего охлаждения сплава ЖС6У практически сводит на нет эффект улучшения свойств путём управления структурой g¢-фазы, и в итоге после гомогенизации при температуре 1210°С длительная прочность остаётся на прежнем уровне.

Реферат опубликован: 1/07/2009