Микроэлектроника и функциональная электроника

Страница: 5/10

По графику зависимости подвижности электронов от их концентрации [1] находят подвижность электронов. В нашем случае mn = 1200 см2/(В·с).

2. Определяют характеристическую длину распределения акцепторов Lа и доноров Lд:

( 4.1)

где хjк – глубина коллекторного перехода. В нашем случае La = 0,374 мкм; Lд = 0,0748 мкм.

3. Для расчета ширины ОПЗ (области пространственного заряда) на коллекторном и эмиттерном переходах предварительно вычисляют контактную разность потенциалов на коллекторном переходе:

( 4.2 )

где fт – тепловой потенциал, равный 0,0258 В при Т=300 К.; ni – концентрация собственных носителей заряда в кремнии (ni » 1010 см-3). В нашем случае fк = 0,6771 В.

Контактная разность потенциалов на эмиттерном переходе fэ рассчитывается аналогично fк. В нашем случае fэ = 0,1809 В.

4. Рассчитывают ширину ОПЗ, распространяющуюся в сторону базы (Dхкб) и в сторону коллектора (Dхкк) при максимальном смещении коллекторного перехода Uкб :

( 4.3 )

( 4.4 )

где , e0, eн – соответственно диэлектрическая постоянная и относительная диэлектрическая проницаемость полупроводниковой подложки.

В нашем случае Dхкб = 0,387 мкм, Dхкк = 0,6656 мкм.

5. Выбираем ширину технологической базы равной 1 мкм.

6. Определяем концентрацию акцепторов на эмиттерном переходе:

Na(xjэ) = Nдкexp(Wб0/La)

( 4.5 )

В нашем случае Na(xjэ) = 1,338·1017 см-3.

7. В результате высокой степени легирования эмиттера область объемного заряда на эмиттерном переходе в основном будет сосредоточена в базе. Приближенно можно считать, что Dхэб » Dхэ, где

( 4.6 )

В нашем случае Dхэ = 0,08858 мкм.

8. Расчитываем ширину активной базы:

Wба = Wб0 - Dхэ - Dхкб

( 4.7 )

В нашем случае Wба = 0,4944 мкм.

Дальнейший расчет транзистора включает вычисление площади эмиттерного перехода,

9. Расчет минимальной площади эмиттерного перехода осуществляется на основе критической плотности тока через эмиттерный переход.

( 4.8 )

где =const для Si (107 cм/с)

В нашем случае jкр = 2811 А/см2.

( 4.9 )

В нашем случае Sе = 160,1 мкм2.

10. Определим емкость коллекторного перехода на основе граничной частоты транзистора.

Из заданной частоты ft, найдем емкость коллекторного перехода Ск

( 4.10 )

В нашем случае Ск = 0,5 пФ

11. Найдем площадь коллекторного перехода как сумму площадей его донной и боковой частей. Причем донная часть площади составляет приблизительно 80% от общей его площади.

Рассчитаем площадь донной части коллекторного перехода:

( 4.11 )

где Vk=Vkp

В нашем случае Sб дон = 2734 мкм2.

Исходя из полученного значения площади найдем площадь боковой части

коллекторного перехода:

( 4.12 )

Реферат опубликован: 2/08/2009