Метод конечных разностей или метод сеток

Страница: 3/6

Если отлично от нуля лишь m элементов, а именно эта ситуация имеет место для сеточных эллиптических уравнений, то на реализацию итерационного шага потребуется 2Mm-M действий т.е. число действий пропорционально числу неизвестных M.

Запишем теперь метод Зейделя в матричной форме. Для этого представим матрицу A в виде суммы диагональной, нижней треугольной и верхней треугольной матриц :

A = D + L + U

где

0 0 . . . 0 0 a12 a13 . . . a1M

a21 0 0 0 a23 . . . a2M

a31 a32 0 0 .

L = . U= .

. .

. aM-1M

aM1 aM2 . . . aMM-1 0 0 0

И матрица D - диагональная.

(k) (k) (k)

Обозначим через Yk = ( Y1 ,Y2 . YM ) вектор k-ого итерационного шага. Пользуясь этими обозначениями запишем метод Зейделя иначе :

( D + L )Yk+1 + UYk = f , k=0,1 .

Приведём эту итерационную схему к каноническому виду двухслойных схем :

( D + L )(Yk+1 - Yk) +AYk = f , k=0,1 .

Мы рассмотрели так называемый точечный или скалярный метод Зейделя, анологично строится блочный или векторный метод Зейделя для случая когда aii - есть квадратные матрицы, вообще говоря, различной размерности, а aij для i<>j - прямоугольные матрицы. В этом случае Yi и fi есть векторы, размерность которых соответствует размерности матрицы aii.

ПОСТРОЕНИЕ РАЗНОСТНЫХ СХЕМ

Пусть Yi=Y(i) сеточная функция дискретного аргумента i. Значения сеточной функции Y(i) в свою очередь образуют дискретное множество. На этом множестве можно определять сеточную функцию, приравнивая которую к нулю получаем уравнение относительно сеточной функции Y(i) - сеточное уравнение. Специальным случаем сеточного уравнения является разностное уравнение.

Сеточное уравнение получается при аппроксимации на сетке интегральных и дифференциальных уравнений.

Так дифференциальное уравнение первого порядка :

dU = f(x) , x > 0

dx

можно заменить разностным уравнением первого порядка :

Yi+1 - Yi = f(xi) , xi = ih, i=0,1 .

h

или Yi+1=Yi+hf(x), где h - шаг сетки v={xi=ih, i=0,1,2 .}. Искомой функцией является сеточная функция Yi=Y(i).

При разностной аппроксимации уравнения второго поряда

2

d U = f(x)

2

dx

получим разностное уравнение второго порядка :

2

Yi+1 - 2Yi + Yi+1 = yi , где yi=h f i

fi = f(xi)

xi = ih

Для разностной aппроксимации производных U’, U’’, U’’’ можно пользоваться шаблонами с большим числом узлов. Это приводит к разностным уравнениям более высокого порядка.

Анологично определяется разностное уравнение относительно сеточной функции Uij = U(i,j) двух дискретных аргументов . Например пятиточечная разностная схема “крест” для уравнения Пуассона

Uxx + Uyy = f(x,y)

на сетке W выглядит следующим образом :

Ui-1j - 2Uij+Ui+1j + Uij-1 - 2Uij+Uij+1 = fij

2 2

hx hy

где hx - шаг сетки по X

hy - шаг сетки по Y

Сеточное уравнение общего вида можно записать так:

N

CijUj = fi i=0,1 .N

j=0

Оно содержит все значения U0, U1 . UN сеточной функции. Его можно трактовать как рзностное уравнение порядка N равного числу узлов сетки минус единица.

В общем случае под i - можно понимать не только индекс , но и мультииндекс т.е. вектор i = (i1 . ip) с целочисленными компонентами и тогда :

Реферат опубликован: 12/08/2006